E | R12 | R13 | R14 | R12 | R22 | R32 | R42 | R1 | R2 | R3 | R4 | |
E | E | (12)(34) | (13)(24) | (14)(23) | (243) | (134) | (142) | (123) | (234) | (143) | (124) | (132) |
R12 | (12)(34) | E | (14)(23) | (13)(24) | (142) | (123) | (243) | (134) | (132) | (124) | (143) | (234) |
R13 | (13)(24) | (14)(23) | E | (12)(34) | (123) | (142) | (134) | (243) | (143) | (234) | (132) | (124) |
R14 | (14)(23) | (13)(24) | (12)(34) | E | (134) | (243) | (123) | (142) | (124) | (132) | (234) | (143) |
R1 | (234) | (124) | (132) | (143) | E | (13)(24) | (14)(23) | (12)(34) | (243) | (142) | (123) | (134) |
R2 | (143) | (132) | (124) | (234) | (13)(24) | E | (12)(34) | (14)(23) | (123) | (134) | (243) | (142) |
R3 | (124) | (234) | (143) | (132) | (14)(23) | (12)(34) | E | (13)(24) | (134) | (123) | (142) | (243) |
R4 | (132) | (143) | (234) | (124) | (12)(34) | (14)(23) | (13)(24) | E | (142) | (243) | (134) | (123) |
R12 | (243) | (123) | (134) | (142) | (234) | (132) | (143) | (124) | E | (14)(23) | (12)(34) | (13)(24) |
R22 | (134) | (142) | (243) | (123) | (124) | (143) | (132) | (234) | (14)(23) | E | (13)(24) | (12)(34) |
R32 | (142) | (134) | (123) | (243) | (132) | (234) | (124) | (143) | (12)(34) | (13)(24) | E | (14)(23) |
R42 | (123) | (243) | (142) | (134) | (143) | (124) | (234) | (132) | (13)(24) | (12)(34) | (14)(23) | E |
E | R12 | R13 | R14 | R12 | R22 | R32 | R42 | R1 | R2 | R3 | R4 | |
E | E | R12 | R13 | R14 | R12 | R22 | R32 | R42 | R1 | R2 | R3 | R4 |
R12 | R12 | E | R14 | R13 | R32 | R42 | R12 | R22 | R4 | R3 | R2 | R1 |
R13 | R13 | R14 | E | R12 | R42 | R32 | R22 | R12 | R2 | R1 | R4 | R3 |
R14 | R14 | R13 | R12 | E | R22 | R12 | R42 | R32 | R3 | R4 | R1 | R2 |
R1 | R1 | R3 | R4 | R2 | E | R13 | R14 | R12 | R12 | R32 | R42 | R22 |
R2 | R2 | R4 | R3 | R1 | R13 | E | R12 | R14 | R42 | R22 | R12 | R32 |
R3 | R3 | R1 | R2 | R4 | R14 | R12 | E | R13 | R22 | R42 | R32 | R12 |
R4 | R4 | R2 | R1 | R3 | R12 | R14 | R13 | E | R32 | R12 | R22 | R42 |
R12 | R12 | R42 | R22 | R32 | R1 | R4 | R2 | R3 | E | R14 | R12 | R13 |
R22 | R22 | R32 | R12 | R42 | R3 | R2 | R4 | R1 | R14 | E | R13 | R12 |
R32 | R32 | R22 | R42 | R12 | R4 | R1 | R3 | R2 | R12 | R13 | E | R14 |
R42 | R42 | R12 | R32 | R22 | R2 | R3 | R1 | R4 | R13 | R12 | R14 | E |
These twelve rotations clearly correpsond to even permutations of four elements, and thus the set of rotational symmetries of regular tetrahedra is equivalent to A(4).
For a proof that the full set of symmetries corresponds to S(4), click here.
Note that the order is changed on the top row of the table so that the diagonal is entirely the identity, E. Though the group is non-Abelian, this arrangement presents a pseudo-symmetry where the three boxes along the diagonal are commutative and the six boxes not along this diagonal are across the diagonal from their inverse.
This can be done because every because for the main diagonal to be the identity, each row must be inverted by its corresponding column. As we all know, (AB)-1 = B-1A-1, so AB-1 = (BA-1)-1.